Microturbulence within the front of a quasiperpendicular supercritical shock

B. Lembège⁽¹⁾ and Muschietti L.^(1, 2)

(1): LATMOS, UVSQ, Guyancourt, France;

(2): SSL, UC Berkeley, USA

Motivations:

* To focuss on wave activity within a shock front, in particular -> in foot region -> within $\Omega_{\rm ce}$ range

* What main source mechanisms ?

* To analyze in details their linear and nonlinear features ?

* Impact of microturbulence on preheating in the foot ?

1D PIC simulation of shock: 90°, Ma= 4.3 , β **i= 0.022**

The shock front self-reformation: an example of front nonstationarity

The shock front self-reformation: an example of front nonstationarity

The shock front self-reformation: an example of front nonstationarity

<u>PIC simul.</u>: Biskamp et Welter, 1972; Lembege et Dawson, 1987; Lembege et Savoini, 1992; Schmitz etal., 2002; Lee et Chapman, 2005

Hybrid simul: Hellinger et al. 2002, Lembege et al., 2009.

i) This self-reformation process persists
 * in 1D/ 2D/ 3D
 * with hybrid / PIC simul.

ii) Self reform time period: 0.3 $\tau_{ci,us}$ \rightarrow 2-3 cycles within one $~\tau_{ci,us}$

Sources of nonstationarity (Q-perp Shock)

Sources of nonstationarity (Q-perp Shock)

does self-reformation persist in presence of ECDI ?

Basic ingredients for microturbulence in the foot

3 diff popul. (re. drift) --> Micro-instabi.

- MicroInst. --> add diffusion -> local heating --> impact of this diffusion on the self-reformation ?

* Different types of micro-inst may be identified

	Shimada et Hoshino (2002)	Schmitz et al. (2002, a,b)	Muschietti et Lembege (2005) 2013	Scholer et al. (2003, 2004)	Scholer et Burgess (2005).
Instabilit	Buneman	Buneman	El. Cycl Drift.	MTS	NonLinear whistler
Shock angle	90°	90°	90°	Oblique (87°)	Oblique (70°)
source	Refl. ions / elec.	Refl. ions / elec.	Refl. ions / elec.	Refl. ions/ elec	. Refl. ions/ Ions.
Ma	10.5	10.5	3	6	11
Mi / me	20 (low)	20 (low)	100 (256, 400)	1836 (real)	1836 (real)
ωpe/ωce	20 (high)	20 (high)	2	2 (low)	2 (low)
	SR persists	SR persists			
			SR persists	Self Ref. control by the instab.	SRdiffers Self Ref. control. by the instab.

Mach number 3.0 upstream β_i =0.022 β_e =0.035

--→ ECDI is observed provided that the grid resolution is high enough

Does the ECDI suppress the self-reformation or not ??

Sources of nonstationarity (Q-perp Shock)

ECDI (Muschietti et Lembège, 2006), Θ = 90°

- * Very rapid growth rate
- * S.Ref. still driven by the accumul. of refl. lons
- accessib. to a few 10 λ_{De} fluctuations within the foot

Main questions :

* does self-reformation persist in presence of ECDI ? \rightarrow YES

* To account for wave activity within a shock front -> foot region

- ECDI candidate OK?
- features of ECDI in L and NL stages ?
- Do one recover signatures of ECDI in space experimental data?

First approach (linear): dispersion relation

Second approach: PIC Numerical simulations

Basic ingredients for microturbulence in the foot

Muschietti et Lembege, 2013

Parameter choice

Symbol	Value
$\omega_{ m pe}/\Omega_{ m ce}$	10
M/m	400
T_c/T_e	1.
T_{b}/T_{e}	0.25
$V_{\rm d}/V_{\rm A}$	6

Elements of the dispersion tensor

Electrons as hot and magnetized

$$Q_{
m xx,e} = rac{4\pi \imath}{\omega} \sigma_{
m xx,e} = -rac{1}{k^2 \lambda_{
m d}^2} \left[-1 + \Lambda_0(\eta) + 2\sum_{
m n=1}^\infty \Lambda_{
m n}(\eta) rac{\omega^2}{\omega^2 - {
m n}^2 \Omega_{
m ce}^2}
ight]$$

where $\eta \equiv (k\rho_e)^2 = (\omega_{\rm pe}/\Omega_{\rm ce})^2 (k\lambda_{\rm d})^2$ $\Lambda_{\rm n}(\eta) \equiv I_{\rm n}(\eta) \exp(-\eta)$, modified Bessel function

Ions as unmagnetized

$$Q_{\rm xx,i} = \frac{4\pi i}{\omega} \sigma_{\rm xx,i} = -\frac{\alpha}{k^2 \lambda_{\rm d}^2} \frac{T_{\rm e}}{2T_{\rm b}} Z' \left(\frac{\omega - k V_{\rm d}}{\sqrt{2} k v_{\rm tb}}\right) - \frac{1 - \alpha}{k^2 \lambda_{\rm d}^2} \frac{T_{\rm e}}{2T_{\rm c}} Z' \left(\frac{\omega - k V_{\rm c}}{\sqrt{2} k v_{\rm tc}}\right)$$

beam: drift V_d , thermal spread v_{tb} and relative density α core: drift $V_c=V_d\,\alpha/(\alpha-1)$

Perpendicular geometry here, electrostatic dispersion is simply

$$1+Q_{\rm xx,e}+Q_{\rm xx,i}=0.$$

ECDI : due to the relative drift between reflected ions and incoming electrons (coupling between ion beam and electron Berstein waves

Electron Cyclotron Drift Instability

- * Discrete bands in spectrum
- * Peaked envelope \rightarrow high k excited first, lower
- k excited later.....

Motivations:

* does self-reformation persist in presence of ECDI ? \rightarrow YES

* To account for wave activity within a shock front -> foot region

- ECDI candidate OK?
- features of ECDI in L and NL stages ?
- Does one recover signatures of ECDI in space experimental data?

First approach (linear): dispersion relation

Second approach: PIC Numerical simulations

Separate periodic 1D PIC similations with:

- * Ion core
- Ion beam
- * Electrons

 \rightarrow To analyze in details the L / NL stages of the ECDI

Evolution of Electron Cyclotron Drift Instability

Main results

a) 3 stages : * Linear T1 * Nonlinear: T2 and T3 (redistribut to lower k modes)

b) transfert of ion beam energy-> to electrons

 \rightarrow Ion beam only loses a few %

c) Rapid growth and NL stage (t < $T_{\rm lh})$ << $T_{\rm ref}$ < $T_{\rm ci}$

Evolution of Electron Cyclotron Drift Instability

Main results

a) 3 stages : * Linear T1 * Nonlinear: T2 and T3 (redistribut to lower k modes) b) transfert of ion beam energy -> to electrons \rightarrow Ion beam only loses a few % c) Rapid growth and NL stage (t < T_{lh}) << T_{ref} < T_{ci} d) Magnetic component during stage T3..!!

Time history of the electrostatic spectrum

Time history of the electrostatic spectrum

Time history of the electrostatic spectrum

Evolution of the Ion Beam

Ion deceleration

distance x/ρ_e

Evolution of the Ion Beam

distance x/ρ_e

Ion deceleration

Bounce frequency:

$$\sqrt{\frac{eE}{M}}$$
 k

trapping begins earlier

for high-k modes

When trapping at low-k begins high harmonics loose coherence

Evolution of the Ion Beam

Ion deceleration **Bounce frequency:** еΕ k М trapping begins earlier for high-k modes When trapping at low-k begins high harmonics loose coherence

Waves spectrum at high harmonics is reabsorbed

Harmonic 1 at Ω_{Ce} grows and dominates the spectrum

Why high-k modes disappear at very late times ? (....i.e. why only fundamental harmonic ω_{ce} survives ?

Signature of « inverse cascade » process ?

Why high-k modes « die out » at very late times ? (....i.e. why only fundamental harmonic ω_{ce} survives ?

Signature of « inverse cascade » process ?

Two effects contribute: "Resonance broadening" vs "ion trapping"

Resonance Broadening

[Dum and Dupree, 1970; Lampe et al., 1972]

Electron orbits in ambient magnetic field $(0, 0, B_0)$

- Linear orbit: In plane [x, y] gyrocenter, gyroradius, gyrophase well defined
- Orbit in turbulent medium: Brownian motion of gyrocenter, random changes in gyroradius and phase angle

 \longrightarrow limits wave-electron interaction time to au_D

 \longrightarrow broadens resonance in dispersion relation

$$Q_{\rm xx,e} = -\frac{\omega_{\rm pe}^2}{k^2} \int d^3 v \left[1 - \sum_{\rm n=-\infty}^{\infty} \frac{\omega J_n^2 (k v_\perp / \Omega_{\rm ce})}{\omega - {\rm n}\Omega_{\rm ce} + \imath \Delta \omega_k} \right] \frac{1}{v_\perp} \frac{\partial f_e}{\partial v_\perp}$$

Resonance Broadening

[Dum and Dupree, 1970; Lampe et al., 1972]

Electron orbits in ambient magnetic field $(0, 0, B_0)$

- Linear orbit: In plane [x, y] gyrocenter, gyroradius, gyrophase well defined
- Orbit in turbulent medium: Brownian motion of gyrocenter, random changes in gyroradius and phase angle
 - \longrightarrow limits wave-electron interaction time to au_D
 - \longrightarrow broadens resonance in dispersion relation

$$Q_{\rm xx,e} = -\frac{\omega_{\rm pe}^2}{k^2} \int d^3 v \left[1 - \sum_{\rm n=-\infty}^{\infty} \frac{\omega J_n^2 (k v_\perp / \Omega_{\rm ce})}{\omega - {\rm n}\Omega_{\rm ce} + \imath \Delta \omega_k} \right] \frac{1}{v_\perp} \frac{\partial f_e}{\partial v_\perp}$$

Broadening $\Delta \omega_k \equiv Dk^2$ with $D \sim \sum_{k'} \frac{|E_{k'}|^2}{4\pi n T_e}$ diffusion coefficient of electrons.

Effect is stronger for high wavenumbers \rightarrow loss of coherency in gyromotion

For high $k\rho_{\rm e}~(k\rho_{\rm e}\gg 1)$ demagnetization of electrons when

 $\tau_{\rm D}~(= < \Delta \omega_{\rm k} > 1) < (\Pi / \Omega_{\rm ce})$

<....>: average over F_e

 \rightarrow Interplay with ampl. of turb (E_{k'}²) and k order.

Stabilization by Resonance Broadening

Stabilization by Resonance Broadening

As time increases, demagnetization proceeds from high-k to low-k

> Magnetized dispersion disallowed... No ECD (Ion acoustic ?)

Stabilization by Resonance Broadening

As time evolves , turbu. level increases

Origin of the magnetic field growth in nonlinear T3 stage

 \rightarrow Electron current ?

Magnetic signatures of the waves: nonlinear stage T3

* "enlarged" snapshot at t = t_c (stage T3)

* cross-field forces on electrons

$$(B_{0z} \times E_x)$$

* Create current J_{ey} (by integrating electrons)

* Most electrons in the range (2 < v_y < 4) contribute to J_{ey}

 * J $_{\rm ey}$ fluctuations fits with largest scale (in ion beam) which dominates at late time

* Spread electrons in [v_x,v_y] space -> heating

Is ECDI microturbulence observed in exp. data

WIND Observations (Breneman and al.; 2013), bow shock crossings

Conclusions:

i) ECDI: Strong and quick emission in the electron cyclotron range \rightarrow discrete energy spectrum (no continuum) \rightarrow signature of Berstein waveswithin t _{Ih} << t_{ref}

ii) Electrostatic spectrum \rightarrow temporal accumul of energy on the fundamental (ω_{ce}) («NO inverse cascade» process). Two effects contribute:

a) « ion trapping» takes place but applies at diff times on diff. K modes (from high to low K modes)

b) **«resonance broadening»** applies to high (early time) and to low K (later time) \rightarrow electrons demagnetisation.

iii) Energy transfert from ion beam \rightarrow electrons (flat-top distri function) \rightarrow «Electron preheating » in the foot (Te/Ti diff . versus US conditions)

iv) Magnetic component in NL regime (due strong E x B to electrons peaked Jy \rightarrow induces Btz)

v) In course.. comparative analysis between....

MTSI

....90° and slightly oblique

....oblique

.. extension to MMS data ..

