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Modeling and Simulation of Electric Propulsion L
Plasmas Critical for NASA Science Missions .

»  The Hall-effect Rocket with Magnetic Shielding (HERMeS) is the first long-life Hall thruster developed for a NASA
mission.

HERMeS is designed to achieve service life of up to 50,000 h.

»  After the discovery of magnetic shielding, the physics behind anomalous transport remains the last long-standing
problem in Hall thrusters.

— Prohibits fully-predictive numerical simulations
— Requires more testing and measurements to produce data required by numerical simulations
— Increases thruster development time, cost and risk for the mission
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with Magnetic Shielding
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VF-5 at the NASA Glenn
Research Center




Predicting Channel and Pole Erosion in Hall Thrusters ﬂ
Requires at Least 2-D Axisymmetric Simulation in r-z Plane

» 1-D codes can provide insight into some fundamental aspects of Hall thruster operation fast, but
are simply inadequate to provide the required level of detail.

« z-0 codes can provide critical insight into azimuthal physics but their ability to provide life-
related assessments is limited.

« Steady-state/effective resistivity/marginal stability approaches offer better numerical stability
but may fail to capture possibly inherent coupling between plasma dynamics.

« Computational resources for 3-D simulations remain too demanding.
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The 2-D Axisymmetric (r-z) Code Hall2De [1]

»  Began development at JPL in 2008

»  Discretization of all conservation laws on a magnetic field-aligned mesh

*  Two components of the electron current density field accounted for in Ohm’s law

»  No statistical noise associated with the heavy-species conservation laws; Multiple ion fluid populations allowed
«  Large computational domain, extending several times the thruster channel length
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[1] Mikellides, I. G., and Katz, I., "Simulation of Hall-effect Plasma Accelerators on a Magnetic-field-aligned Mesh," Physical Review E, VVol. 86, No. 4, 2012, pp.
046703 (1-17).



@ Hall2De Equations for the Plasma )i,
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Electron Temperature, Te (eV)

Extensive Effort Dedicated to Achieving a “Testbed” Plasma Solution ﬂ
that Can be used to Assess Anomalous Electron Transport Theories

40

35 4

30 A

25 A

20 A

15 A

10 A

Several years of work have combined plasma measurements and r-z simulations with

Hall2De to isolate the spatial variation of the anomalous collision frequency needed in
Ohm’s law.

Hall2De plasma solution using empirically guided anomalous collision frequency now as
close to a “measurement” as possible; can be used as a testbed.
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Uncertainties and Sensitivities Associated with the
Hall2De “Testbed’ Plasma Solution A

Required anomalous collision frequency deep in the channel
Interior difficult to quantify.

Collision frequency, v, (1/s)
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There EXxists Strong Evidence Behind the Presence of ﬂ
ExB-driven lon Acoustic Waves in Hall Thrusters

« Electron cyclotron drift waves identified in z-6 PIC simulations and proposed as source of
anomalous electron tranposrt in Hall thrusters [1-4].

« Also in place is experimental evidence of high frequency micro-fluctuations in the ExB
direction that exhibits linear dispersion [5].

of Dispersion measurements [5]
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[1]1J. C. Adam, A. Héron, and G. Laval, “Study of stationary plasma thrusters using two-dimensional fully kinetic simulations”, Physics of Plasmas 2004.

[2] A. Ducrocq, J. C. Adam, A. Héron, and G. Laval, “High-frequency electron drift instability in the cross-field configuration of Hall thrusters” Physics of Plasmas 2006
[3] A. Héron and J. C. Adam, “Anomalous conductivity in Hall thrusters: Effects of the non-linear coupling of the electron-cyclotron drift instability with secondary
electron emission of the walls”, Phys. Plasmas 2013

[4] P. Coche and L. Garrigues, “A two-dimensional (azimuthal-axial) particle-in-cell model of a Hall thruster”, Physics of Plasmas 2014

[5] Tsikata, S., Lemoine, N., Pisarev, V., and Grésillon, D. M. Physics of Plasmas. Vol. 16., No. 3. 2009. 8



Testing the Theory that Anomalous Transport -H-
Is Caused by the ExB-driven lon Acoustic Instability
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Testing the Theory that Anomalous Transport is Caused
by the ExB-driven lon Acoustic Instability
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e Wave energy evolution
equation. Assumes wave energy
generated from singly-charged
ions comprising the main beam.

10



Testing the Theory that Anomalous Transport is Caused ﬂ
by the ExB-driven lon Acoustic Instability
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e Wave energy evolution

equation. Assumes wave energy ’YD = ’Y + ’YL + Vi

generated from singly-charged
ions comprising the main beam.
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by the ExB-driven lon Acoustic Instability

Testing the Theory that Anomalous Transport is Caused

. R
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e Wave energy evolution

equation. Assumes wave energy ’YD = ’Ym + 'YL + \)i
*

generated from singly-charged
ions comprising the main beam.

_|_
e Total growth rate. In steady state the _ V- (Wm ui )
total growth rate must yield this value Ym =
based on a combination of measurements 2Wm

and 2-D sims (testbed solution).
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Testing the Theory that Anomalous Transport is Caused
by the ExB-driven lon Acoustic Instability
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Testing the Theory that Anomalous Transport is Caused
by the ExB-driven lon Acoustic Instability
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@ Comparisons Assuming Cold lons (T,=T,=0.07eV) Nk

Growth rate or frequency (1/s)
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— *Measurements obtained by W. Huang,
University of Michigan, in PhD thesis:
"Study of Hall Thruster Discharge Channel
Wall Erosion via Optical Diagnostics," 2011.

Hall2De “testbed”
plasma solution
assuming cold ions
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@ The Significance of the lon Temperature ik,
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Growth Rate Comparisons After
Accounting for Warm lons

RL
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Destabilization of ExB-
driven ion acoustic
waves associated with
Xe* beam ions possible
In the channel interior,
but not in the near
plume where the waves
are severely (Landau)
damped.

Convection of waves to
the plume not sufficient
to achieve the energy
density needed there.
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Theoretical growth of instability in acceleration region ‘H
1s higher than the “needed” growth
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* The anomalous collision frequency is found to have a minimum at the acceleration region. However, the theoretical growth rate
predicted by such plasma potential profile is conductive to large growth rates of the instability, which in turn should result in large
values of the wave energy density and the anomalous collision frequency.

* Our efforts have been focused on eliminating the growth in the acceleration region by means of, for instance, Landau damping. All our
efforts have been unsuccessful as even significant Landau damping cannot completely counteract the maximum growth rate.
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Can accounting for multiple wave-lengths
| Improve our self-consistent model? SR

Frame 001 | 06 Apr2017 | Hall-Effect Accelerator - Plasma

For the H6, the Debye length increases by a
factor of 5, following ion streamlines.

Neglecting Landau damping, the maximum

growth occurs for k = 1/ [21%,. Waves of

wavelength that have maximum growth inside
the channel may be damped as the Debye
length increases, while other waves with lower
k may start growing further downstream.

Addition of Landau damping may change the
wave-length of maximum growth at a given
location.

Proposed algorithm: solve a discrete number of
equations for the wave actions associated with
multiple wavelengths. The total anomalous
collision frequency can be obtained as the sum
of all contributions.
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Summary of equations for discrete wave-
length model for wave action i
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We also accounted in our model for anomalous heating of ions:
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experimentally informed solution background plasma

Wave action distribution along centerline based on A

First check for self-consistent model: experimentally informed solution as background for computing anomalous
collision frequency based on the previous equations. Then compare result with the experimentally informed

collision frequency.
lon temperature is computed including anomalous heating. This has negligible effect of momentum (nE > V(nT))

but affects growth rate w; ;.
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Multiple wave-length model do not produce results
that agree with measurements

SRL

First check for self-consistent model: experimentally informed solution as background for computing anomalous
collision frequency based on the previous equations. Then compare result with the experimentally informed

collision frequency.

lon temperature is computed including anomalous heating. This has negligible effect of momentum (nE > V(nT))
but affects growth rate w; ;.
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Multiple wave-length model do not produce results
that agree with measurements A

» Results of the first test suggest that a fully self-consistent simulation will produce results
that are very different to those of the experimentally informed solution.

Very flat plasma
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= Accepting that there Is going to be growth of
the instability in the acceleration region i

* So far, we relied on trying to decrease the growth rate of the instability in the acceleration
region by means of a damping mechanism, such as Landau damping.

* Follow a new approach: what if growth of the instability still occurs, but the electrons do
not interact with the waves at certain locations?

* One basicidea is to compare the energy associated with the ion drift with the energy of
the wave perturbations

me‘E‘z ¢ _ kTeZNk
¢drmz2q\5\2 “ \nm @k,

* We compute an auxiliary variable ¢ by means of a heat equation

% _ K1V2§k _ ¢dl’ift
* And assume that when ¢ is large, the anomalous collision frequency is not affected by the

wave action
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@ Setting a limit to the drift velocity k.

* Simulations showed that the anomalous collision frequency can become almost zero with
this model as a consequence of the plasma potential gradient becoming very steep.

* To avoid this circumstance, we also included a simple model for computing the floor value
of the anomalous collision frequency.

* The model relies on the fact that the Mach number for electrons cannot exceed 1, as
other instabilities characterized by shorter time-scales (i.e., two-stream instability for
electrons) may occur.

qTe 2 je/\ — Qe jeL — qB jeL
me qne qne me (Vei +Ven + Va) qne
v B JeJ_ V. —vVv

a, floor - ei en
mene \ qTe/me
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Wave action distribution along centerline with
new model i1s unmodified (as expected)

. R

* First check for self-consistent model: experimentally informed solution as background for
computing anomalous collision frequency based on the previous equations. Then compare

result with the experimentally informed collision frequency.
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The effect of the correction factor is noticeable when
computing the anomalous collision frequency

. R

* First check for self-consistent model: experimentally informed solution as background for
computing anomalous collision frequency based on the previous equations. Then compare
result with the experimentally informed collision frequency.
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Self-consistent simulation predicts location of
acceleration region SR

* Asthe comparison between the self-consistent and the experimentally informed profiles of the
anomalous collision frequency (when using the experimentally informed solution as background)
has been greatly improved, we proceed to run a fully self-consistent simulation.
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Plasma potential and anomalous collision L
frequency comparison
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Electron temperature and anomalous collision L
frequency comparison
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Self-consistent simulation

Simulation based on
experimentally informed
anomalous collision frequency




2-D wave energy density and anomalous
collision frequency

Anomalous collision frequency Total wave action
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Concluding Remarks <=L

35

By examination of the experimentally informed solution, we came to the conclusion that its associated anomalous
collision frequency solution was not achievable when employing a wave energy equation with growth terms
dictated by linear theory of ion acoustic waves, assuming cold Maxwellian ions. Warm ions could however have a
significant effect.

The major difficulty was to reconcile the fact that the anomalous collision frequency is minimum when the
electron drift is maximum (and thus the growth rate of the instability is maximum).

We attempted to decrease the growth rate in the acceleration region by separating the contributions of multiple
wave-lengths to the wave action and also by including the additional anomalous ion heating. This approach was
proven unsuccessful as the growth rate in the acceleration region is typically much larger than Landau damping.

We finally focused on the hypothesis that the electron transport may not be affected by ion-acoustic waves in the
acceleration region. We proposed to use a simple comparison between the drift energy of the electrons and the
energy of the waves to quantify this phenomenon. We also limited the floor value of the anomalous collision
frequency so the Mach number for electrons never exceeds 1.

The anomalous collision frequency solution obtained with this model exhibited good agreement with the
experimentally informed profile when using the experimentally informed plasma solution as background. Full self-
consistent simulations also predicted correctly the location of the acceleration region.

Based on the promising results of this investigation, we believe that the path forward involves a detailed study of
the physics of the acceleration region and whether the electron-wave interactions need to be quantified with non-
linear models instead of being derived from quasi-linear theory.
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Preamble: IAT Predicted to Drive Electron Transport in A
the Hollow Cathode Near-Plume as Early as 2004 [1-3].

» Classical electron collisions in 2-D hollow cathode OrCa2D Global Simulations of the NSTAR DHC [3]
simulations not sufficient to explain plasma

measurements (just like in Hall thruster codes)

«  Current-driven ion acoustic waves proposed as the
“anomalous” mechanism in these devices [1-3]

— Electron drift speed > ion sound speed generates
ion acoustic turbulence (1AT)

— | AT scatters electrons
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IAT Confirmed by Measurement to Exist and Drive Electron A
Transport in the Hollow Cathode Near-Plume [1,2]

Ve > Cg Wave dispersion diagnostics confirm
long-suspected presence of IAT
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[1] Jorns, B. A., Mikellides, 1. G., and Goebel, D. M., "lon Acoustic Turbulence in a 100-A LaB6 Hollow Cathode,” Physical Review E, Vol. 90,

2014, pp. 063106 (1-10).
[2] Jorns, B. A., Mikellides, 1. G., and Goebel, D. M., “Investigation of a Energetic Ions in a 100-A Hollow Cathode,” AIAA Paper No. 14-3826,
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Lampe et al. (1972) Showed Electron Cyclotron Waves in a ﬂ
Plasma with Crossed E,B Transition to lon Acoustic Waves [1]

«  When electron drift is high enough or when PIC simulations
B->0 cyclotron harmonics disappear and the
unstable spectrum approaches the usual 2-
stream instability (continuous spectrum).

« Lampe proposes “...B does not create a new
instability but rather quantizes the unstable
spectrum into discrete bands.” i0%F

Linear theory
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kty—> Energy units are arbitrary. The solid lines are drawn to emphasize
the exponential behavior during the quasilinear stages. Note
F1G. L. Growth rate vs wavenumber for a hydrogen plasma that electron heating is isotropic in two dimensions because of

with 93/9,=1, T:/T.=0 for the cases Q./w.=0.1, Q=0 (smooth

curve). the magnetic field, while ion heating is one-dimensional.
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and Simulation of the Beam Cyclotron Instability”, Physics of Fluids 15, 662 (1972)
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