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Outline

* JP’s question on transport: wall vs fluctuations

* Controlling spoke (CHT’s case)
* Suppression
* Mode transition
* Driving

* G@Gas effect on spoke (Penning’s case)



Conditions for near-wall conductivity in simulations

EVDF towards the wall  « From 1-D PIC simulations:
E=200 V/cm - Electron-induced SEE (unlike magnetrons)
] N 1 - Depleted EVDF due to wall losses

- Counter streaming electron beams
gaining net energy due to ExB motion
from the applied electric field:
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where Vy, = E//B is the drift velocity in the crossed elec-

E=100 V/ cm tric and magnetic fields, and ¢ = w7 is the final phase of

v = T 8 cyclotron rotation before the electron collides with the wall.

. Here, w.. = eB/m is the electron gyrofrequency, and 7 is the
electron time of flight between the wall.

Note that the maximum of the additional electron energy on
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' ? a scale of the gyroradius (see Fig. 5) is
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If this energy is insufficient to induce a strong SEE, counter-
streaming beams of emitted electrons will have a weak effect

40 20 0 20 40 I
Wx‘ eV on € plasma.

EVDF of bulk without SEE No strong E-field - No strong SEE beams,
EVDF of bulk with SEE No “Near-Wall” conductivity!

EVDF of beams 4
Maxwellian EVDF Raitses et al., IEEE Trans. Plasma Sci., 39, 995 (2011)
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Wall material effect in PPPL experiments

* Thruster V-l characteristics with
different segmented wall materials
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Raitses, Staack, Dunaevsky, Fisch, J. App. Phys. 99, 036103 (2006)



A possible explanation of different V-I's for BN case

3 oA
T —— « Temperature effect on SEE from BN-SIO,
00 Boron Nitride steady state 5
A Verylow SEE velvet
< e
- 25 ]
OCJ o Room température °C
= [l 15 | o _ 300
o / 2 .o .0 400°C
@ / k=] O o
m 2 1 2 OO s ]
bt > o py
© § & o
L w1 09""“"' 0.
o 2 o o
2 & o® a
a § o 8
1.5 ° Qoo o
[} [} o
] o
054 &
1 [ I |
0 200 400 600 800 . | | | | |
0 20 40 60 80 100 120
Discharge voltage, V Incident energy (eV)

* Heating of BN walls shifts SEE = 1 to much larger energies of primary electrons”
Do not expect to see wall material effect even at 400 V!!!!

*M. Belhaj, N. Guibert, K. Guerch, P Sarrailh, N. Arcis, J. Phys. D: Appl. Phys. 2014
Similar results in Raitses, Dourbal, Spector, IEPC-342-2015 6



Velvet: surface-architectured material with low SEE

« Total SEE yield at normal incidence measured in vacuum

1.5 .
_ m Patino et al
—e Planar surface

o 4 0.8% Velvet (1.5 mm)
o . —o— 1.8% Velvet (1.5 mm)
->—_ 1.0} u. ® o v 3.5% Velvet (1.5 mm)
T .

L

(7p)

©

el

o

|_

0.0

0 200 400 600 800 1000
Primary Electron Energy (eV)

 SEE from velvet can be several times lower than SEE from
BN at energies of primary electrons of < 100eV

Jin, Ottaviano, Raitses (2017)



Wall material effect in CNRS-ICARE experiments
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FIG. 4. Variations of (a) discharge current mean (p/d) and (b) discharge cur-
FIG. 5. Variations of (a) thrust and (b) total efficiency with voltage for carbon
velvet (squares) and BNSIO; (circles).

rent standard deviation (a/d) with voltage for carbon velvet (squares) and
BNSIO; (circles).

* Wall material effect is stronger < 400 V than in PPPL experiments and
opposite (increasing current for low SEE).

* No stable operation at > 400 V

* Sedina proposed enhanced ECDI but it could be a short circuit by velvet - ?

» wall effect is sensitive to thruster conditions and configuration!

8



PPPL spoke studies in Cylindrical Hall thruster (CHT)

Ceramic channel * Diverging magnetic field topology.

Electromagnets . . .
e Operation involves closed ExB drift.

e Electrons are confined in the hybrid
magneto-electrostatic trap.

e lons are accelerated in a large volume-
to-surface area channel. (potentially
lower erosion).

Anode
Annular part Cathode-
neutralizer

100 W 2.6 cm CHT

Raitses and Fisch, Phys. Plasmas 8, (2001)
Smirnov, Raitses, Fisch, J. Appl. Phys., 92 (2002)



From probes and camera, spoke exists from the
anode to exit, but strongest m=1 near the anode

* Spoke in high speed images * Langmuir probes to measure spoke in CHT
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* Local wavenumber-frequency spectrum

10
J. Parker, Y. Raitses, N. J. Fisch, Appl. Phys. Lett., (2010)



Spoke conducts

> 50% of the discharge current

3 azimuthal probes, 90 degrees

apart, per axial Iocatio‘n/l\A

back middle front

* Spoke in CHT
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Measured electron-cross field current through
the spoke to the anode at macro-time scale

a ) Spoke Density and Potential Profiles

Normalized Density, Potential, and Temperature
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* Correlated segmented anode,
interior probes, and high speed
camera measurements:

*The density oscillates in-phase with the
spoke current.

*The potential is ~45° out of phase.

* The azimuthal electric field.

dV B dV {a’;r- -1 1 dV
dr  dt “dt’ Vspoke dt

E:

* The current to the anode:

Je = <T~le Ee@/Br>

where v, =E/B.

* The drift current is at least ~ 25% of the

discharge current, explaining a large

fraction ~ 50% of the anode current.
Ellison, Raitses, Fisch, Phys. Plasmas 19 (2012)



Controlling ExB transport from the cathode side

Thermionic
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e Control of the cathode electron emission by
driving auxiliary (keeper-emitter) discharge.

* Overrunning the discharge current above a
normal (self-sustained) steady-state value.

o

Hall thruster Raitses, Smirnov, Fisch, Physics of Plasmas 16, 057106 (2009) 13




Spoke suppression and transport mode transition:
1. Cathode effect

* Hollow cathode and filament
cathode effect on spoke
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* Spoke is suppressed by increasing o 107
ol
cathode emission. - -
€
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Parker, Raitses, Fisch, Appl. Phys. Lett., 97 (2010)



Spoke suppression and transport mode transition:
1. Background pressure effect
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e Suppression of spoke, similar to cathode
electron emission effect

+  —5 uTorr, 0 keeper current
—50 pTorr, 0 keeper current

Power Spectral Density (a.u.)

e Excitation of fast oscillations in discharge €., < or 25 kommer cumont
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e Suppression of breathing mode (at ~10 Raitses, Parker, Davis, and Fisch, AIAA 2010-6775 (2010)
kHz, see above right)



Cathode mode effect on performance

Angular ion current distribution in the plume from CHT
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« 20-30% plume narrowing
] o Raitses, Smirnov and Fisch, Appl. Phys. Lett. 2007
« 50% increase of the anode efficiency

* No spoke, no breathing modes 16



Spoke suppression from the anode side

* Damping spoke with a low frequency negative feedback:
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Linear drive of m=1 mode coherent structures in CHT

ExB

Cathode ]

Segmented Driving anode
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* Applied a voltage modulation to
segmented anode in CHT

* Spoke is driven in both +/- ExB directions

-ExB



Linear drive of m=1 mode coherent structures in CHT

Dirving frequency/KHz
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Summarizing remarks on spoke in CHT

* Anomalously high cross-field current
* Spoke is everywhere in the channel

* Spoke control from the cathode side or anode side (in
spite of magnetic insulation)

* Better performance without spoke — accidental correlation
or cause?

* Mode transition of electron transport: when there is no
spoke, there are high frequency oscillations

* Could it be that spoke dissipate energy to small scale
turbulence?

* If spoke is needed, it can be excited.



Beam-plasma Penning system

e Easier diagnostic access than in Hall thrusters

* A broad pressure range (104-102 mtorr) —Hall thruster level to
higher pressures than in previous studies.

Langmuir probe
Coil I
L

S8 RF-plasma
R cathode

[
s

Beam of electrons
Coil
R

* Emissive and fast-sweeping biased probes, filtered high speed
imaging, time-resolving Laser Induced Fluorescence, OES 21




Varying the gas mixture composition to study and control
coherent plasma structures — ExB spoke rotation

* Spoke rotating frequency:
Experiment vs Linear Theory
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* Measurements of spoke frequency with
probes, and filtered fast frame imaging

* Independ on gases (Xe, Ar, H,), and gas
mixtures always single frequency of
rotation, m=1 mode

* Significant differences between
experiment and linear theory of MSHI
and critical ionization velocity (CIV)

* Accounting for the ion rotation seems
gives a better agreement with the
experiment

* But linear analysis predicts more
unstable higher m>1 modes.



